Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            In this work, we formulate and solve a new type of approximate nearest neighbor search (ANNS) problems called ANNS after linear transformation (ALT). In ANNS-ALT, we search for the vector (in a dataset) that, after being linearly transformed by a user-specified query matrix, is closest to a query vector. It is a very general mother problem in the sense that a wide range of baby ANNS problems that have important applications in databases and machine learning can be reduced to and solved as ANNS-ALT, or its dual that we call ANNS-ALTD. We propose a novel and computationally efficient solution, called ONe Index for All Kernels (ONIAK), to ANNS-ALT and all its baby problems when the data dimension d is not too large (say d ≤ 200). In ONIAK, a universal index is built, once and for all, for answering all future ANNS-ALT queries that can have distinct query matrices. We show by experiments that, when d is not too large, ONIAK has better query performance than linear scan on the mother problem (of ANNS-ALT), and has query performances comparable to those of the state-of-the-art solutions on the baby problems. However, the algorithmic technique behind this universal index approach suffers from a so-called dimension blowup problem that can make the indexing time prohibitively long for a large dataset. We propose a novel algorithmic technique, called fast GOE quadratic form (FGoeQF), that completely solves the (prohibitively long indexing time) fallout of the dimension blowup problem. We also propose a Johnson-Lindenstrauss transform (JLT) based ANNS-ALT (and ANNS-ALTD) solution that significantly outperforms any competitor when d is large.more » « less
- 
            null (Ed.)In this work, we first propose a parallel batch switching algorithm called Small-Batch Queue-Proportional Sampling (SB-QPS). Compared to other batch switching algorithms, SB-QPS significantly reduces the batch size without sacrificing the throughput performance and hence has much lower delay when traffic load is light to moderate. It also achieves the lowest possible time complexity of O(1) per matching computation per port, via parallelization. We then propose another algorithm called Sliding-Window QPS (SW-QPS). SW-QPS retains and enhances all benefits of SB-QPS, and reduces the batching delay to zero via a novel switching framework called sliding-window switching. In addition, SW-QPS computes matchings of much higher qualities, as measured by the resulting throughput and delay performances, than QPS-1, the state-of-the-art regular switching algorithm that builds upon the same underlying bipartite matching algorithm.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
